Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Viruses ; 14(9)2022 09 18.
Article in English | MEDLINE | ID: covidwho-2033152

ABSTRACT

The ongoing spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused hundreds of millions of cases and millions of victims worldwide with serious consequences to global health and economies. Although many vaccines protecting against SARS-CoV-2 are currently available, constantly emerging new variants necessitate the development of alternative strategies for prevention and treatment of COVID-19. Inhibitors that target the main protease (Mpro) of SARS-CoV-2, an essential enzyme that promotes viral maturation, represent a key class of antivirals. Here, we showed that a peptidomimetic compound with benzothiazolyl ketone as warhead, YH-53, is an effective inhibitor of SARS-CoV-2, SARS-CoV, and MERS-CoV Mpros. Crystal structures of Mpros from SARS-CoV-2, SARS-CoV, and MERS-CoV bound to the inhibitor YH-53 revealed a unique ligand-binding site, which provides new insights into the mechanism of inhibition of viral replication. A detailed analysis of these crystal structures defined the key molecular determinants required for inhibition and illustrate the binding mode of Mpros from other coronaviruses. In consideration of the important role of Mpro in developing antivirals against coronaviruses, insights derived from this study should add to the design of pan-coronaviral Mpro inhibitors that are safer and more effective.


Subject(s)
COVID-19 Drug Treatment , Middle East Respiratory Syndrome Coronavirus , Peptidomimetics , Antiviral Agents/chemistry , Benzothiazoles/pharmacology , Coronavirus 3C Proteases , Cysteine Endopeptidases/metabolism , Humans , Ketones , Ligands , Peptide Hydrolases , Protease Inhibitors/chemistry , SARS-CoV-2
2.
J Mol Biol ; 434(16): 167706, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-1914637

ABSTRACT

New variants of the severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) emerged and spread rapidly all over the world, which strongly supports the need for pharmacological options to complement vaccine strategies. Main protease (Mpro or 3CLpro) is a critical enzyme in the life cycle of SARS-CoV-2 and appears to be highly conserved among different genera of coronaviruses, making it an ideal target for the development of drugs with broad-spectrum property. PF-07304814 developed by Pfizer is an intravenously administered inhibitor targeting SARS-CoV-2 Mpro. Here we showed that PF-07304814 displays broad-spectrum inhibitory activity against Mpros from multiple coronaviruses. Crystal structures of Mpros of SARS-CoV-2, SARS-CoV, MERS-CoV, and HCoV-NL63 bound to the inhibitor PF-07304814 revealed a conserved ligand-binding site, providing new insights into the mechanism of inhibition of viral replication. A detailed analysis of these crystal structures complemented by comprehensive comparison defined the key structural determinants essential for inhibition and illustrated the binding mode of action of Mpros from different coronaviruses. In view of the importance of Mpro for the medications of SARS-CoV-2 infection, insights derived from the present study should accelerate the design of pan-coronaviral main protease inhibitors that are safer and more effective.


Subject(s)
Coronavirus 3C Proteases , Coronavirus Protease Inhibitors , Indoles , Leucine , Pyrrolidinones , SARS-CoV-2 , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus Protease Inhibitors/chemistry , Coronavirus Protease Inhibitors/pharmacology , Drug Design , Humans , Indoles/chemistry , Indoles/pharmacology , Leucine/chemistry , Leucine/pharmacology , Ligands , Protein Binding , Pyrrolidinones/chemistry , Pyrrolidinones/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology
3.
J Virol ; 96(8): e0201321, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1779314

ABSTRACT

The high mutation rate of COVID-19 and the prevalence of multiple variants strongly support the need for pharmacological options to complement vaccine strategies. One region that appears highly conserved among different genera of coronaviruses is the substrate-binding site of the main protease (Mpro or 3CLpro), making it an attractive target for the development of broad-spectrum drugs for multiple coronaviruses. PF-07321332, developed by Pfizer, is the first orally administered inhibitor targeting the main protease of SARS-CoV-2, which also has shown potency against other coronaviruses. Here, we report three crystal structures of the main protease of SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome (MERS)-CoV bound to the inhibitor PF-07321332. The structures reveal a ligand-binding site that is conserved among SARS-CoV-2, SARS-CoV, and MERS-CoV, providing insights into the mechanism of inhibition of viral replication. The long and narrow cavity in the cleft between domains I and II of the main protease harbors multiple inhibitor-binding sites, where PF-07321332 occupies subsites S1, S2, and S4 and appears more restricted than other inhibitors. A detailed analysis of these structures illuminated key structural determinants essential for inhibition and elucidated the binding mode of action of the main proteases from different coronaviruses. Given the importance of the main protease for the treatment of SARS-CoV-2 infection, insights derived from this study should accelerate the design of safer and more effective antivirals. IMPORTANCE The current pandemic of multiple variants has created an urgent need for effective inhibitors of SARS-CoV-2 to complement vaccine strategies. PF-07321332, developed by Pfizer, is the first orally administered coronavirus-specific main protease inhibitor approved by the FDA. We solved the crystal structures of the main protease of SARS-CoV-2, SARS-CoV, and MERS-CoV that bound to the PF-07321332, suggesting PF-07321332 is a broad-spectrum inhibitor for coronaviruses. Structures of the main protease inhibitor complexes present an opportunity to discover safer and more effective inhibitors for COVID-19.


Subject(s)
Lactams , Leucine , Nitriles , Peptide Hydrolases , Proline , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Humans , Lactams/chemistry , Lactams/metabolism , Leucine/chemistry , Leucine/metabolism , Middle East Respiratory Syndrome Coronavirus/chemistry , Middle East Respiratory Syndrome Coronavirus/enzymology , Nitriles/chemistry , Nitriles/metabolism , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Proline/chemistry , Proline/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/enzymology , SARS-CoV-2/chemistry , SARS-CoV-2/enzymology , COVID-19 Drug Treatment
4.
J Virol ; 96(1): e0125321, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1639525

ABSTRACT

Over the past 20 years, the severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and SARS-CoV-2 emerged, causing severe human respiratory diseases throughout the globe. Developing broad-spectrum drugs would be invaluable in responding to new, emerging coronaviruses and to address unmet urgent clinical needs. Main protease (Mpro; also known as 3CLpro) has a major role in the coronavirus life cycle and is one of the most important targets for anti-coronavirus agents. We show that a natural product, noncovalent inhibitor, shikonin, is a pan-main protease inhibitor of SARS-CoV-2, SARS-CoV, MERS-CoV, human coronavirus (HCoV)-HKU1, HCoV-NL63, and HCoV-229E with micromolar half maximal inhibitory concentration (IC50) values. Structures of the main protease of different coronavirus genus, SARS-CoV from the betacoronavirus genus and HCoV-NL63 from the alphacoronavirus genus, were determined by X-ray crystallography and revealed that the inhibitor interacts with key active site residues in a unique mode. The structure of the main protease inhibitor complex presents an opportunity to discover a novel series of broad-spectrum inhibitors. These data provide substantial evidence that shikonin and its derivatives may be effective against most coronaviruses as well as emerging coronaviruses of the future. Given the importance of the main protease for coronavirus therapeutic indication, insights from these studies should accelerate the development and design of safer and more effective antiviral agents. IMPORTANCE The current pandemic has created an urgent need for broad-spectrum inhibitors of SARS-CoV-2. The main protease is relatively conservative compared to the spike protein and, thus, is one of the most promising targets in developing anti-coronavirus agents. We solved the crystal structures of the main protease of SARS-CoV and HCoV-NL63 that bound to shikonin. The structures provide important insights, have broad implications for understanding the structural basis underlying enzyme activity, and can facilitate rational design of broad-spectrum anti-coronavirus ligands as new therapeutic agents.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/chemistry , Catalytic Domain , Coronavirus/classification , Coronavirus/enzymology , Coronavirus 3C Proteases/chemistry , Crystallography, X-Ray , Molecular Docking Simulation , Naphthoquinones/chemistry , Protein Binding
5.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 10): 348-355, 2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1450488

ABSTRACT

Human coronavirus NL63 (HCoV-NL63), which belongs to the genus Alphacoronavirus, mainly infects children and the immunocompromized and is responsible for a series of clinical manifestations, including cough, fever, rhinorrhoea, bronchiolitis and croup. HCoV-NL63, which was first isolated from a seven-month-old child in 2004, has led to infections worldwide and accounts for 10% of all respiratory illnesses caused by etiological agents. However, effective antivirals against HCoV-NL63 infection are currently unavailable. The HCoV-NL63 main protease (Mpro), also called 3C-like protease (3CLpro), plays a vital role in mediating viral replication and transcription by catalyzing the cleavage of replicase polyproteins (pp1a and pp1ab) into functional subunits. Moreover, Mpro is highly conserved among all coronaviruses, thus making it a prominent drug target for antiviral therapy. Here, four crystal structures of HCoV-NL63 Mpro in the apo form at different pH values are reported at resolutions of up to 1.78 Å. Comparison with Mpro from other human betacoronaviruses such as SARS-CoV-2 and SARS-CoV reveals common and distinct structural features in different genera and extends knowledge of the diversity, function and evolution of coronaviruses.


Subject(s)
Coronavirus NL63, Human/chemistry , Crystallization/methods , Crystallography, X-Ray/methods , Humans , Hydrogen-Ion Concentration , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL